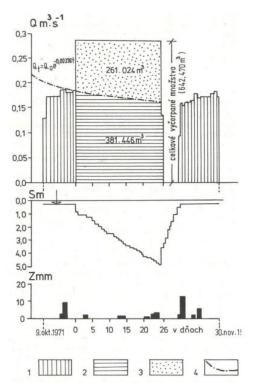


Country	MIKAS springs	Coordinates	Spring discharge	Criteria* in order / Main	Data
•		/ Nearby City	(Q in	justification	collected by
			l/s,min/av/max)	*/ H-historic, A-aesthetic, S-scientific,	
			/ tapped or not	E-Economic, Ec-ecologic	
Slovakia	1. Yergaly	N 48,864294°	141/382/1315	H, A, E, S, Ec	Peter Malik,
		E 19,192822°	Tapped for	The catchment area consists of limestones and dolomites of the Middle	Anton Auxt
+		Z = 711 m asl	potable water	and Late Triassic of the Fatricum (Krížňa	
•		Veľká Fatra Mts.	supply of the city	nappe) and Tatricum (cover enevelope)	
		/ Starohorské	Banska Bistrica.	tectonic units. The surface area is	
		vrchy Mts.	This is an	approx. 25 km², but still not fully delineated.	
		Donovaly,	excellent example of successfully	The use of this ascending spring was	
		Hron River	completed karst	designed to ensure a permanent	
		basin	aquifer regulation	withdrawal of 250 l/s by combined use of	
			project. In spring	static reserves and dynamic inflow of	
			area four large- diameter	karst groundwater compared to the original minimum of 141 l/s. During high	
			exploitation wells	water stages, the static component is	
			were drilled to a	naturally replenished. The technical	
			depth of 44 to 50	regime of use was designed in three	
			m. They ensure delivery of stable	phases: (a) when the spring yield is above 250 l/s, gravity withdrawal, (b)	
			water quantity to	when the yield drops below 250 l/s,	
			the consumers.	withdrawal by artificial suction siphon to	
				a drawdown of 5 m, (c) in critical periods of yield decline, withdrawal by	
				submersible pumps to a drawdown of 19	
				m (Kullman, 1990). However, such a case	
				of water withdrawal has not occurred	
				since 1993. Kullman et al. (2007)	
				however state that the combined use of static reserves and the dynamic	
				component of groundwater circulation	
				in the case of the Jergaly spring, despite	
				extremely dry years, has demonstrated	
				high efficiency of exploitation of karst- fissure waters in this form.	
				Water is excellent quality and only	
				chlorination is applied. However, source	
				is under threat of nearby growing	
	2. Limbašská	N 48,294947°	0/32/424	recreational and ski centre Donovaly. H, S, A, Ec	Peter Malik,
	vyvieračka	E 17,169319°		Limbašská vyvieračka is a barrier,	Eva Malíková
	Jyriciacia	Z = 337 m asl	The spring is not	ascending spring issuing from Triassic	
			captured and exploited	carbonates. In the past, several authors have contributed to the naming of this	
		Malé Karpaty	exploited	occasional spring by the name Estavella,	
		Mts.		with the idea that the karst abyss has the	
		Limbach		function of a spring during high water	
				levels and the function of a sink during low water levels. Under the	
				terminologically misleading name	
				Estavella, it is an example of	
				underground river piracy, when waters	
				from the Stupavský potok Stream transfer to another basin Račí potok	
				Stream in the east, which eco system is	
				maintaining. The Prepadlé swallow hole	
				is situated 116 m higher than the	
				Limbašská vyvieračka spring, and is 2.75	
				km away. The connection between the	

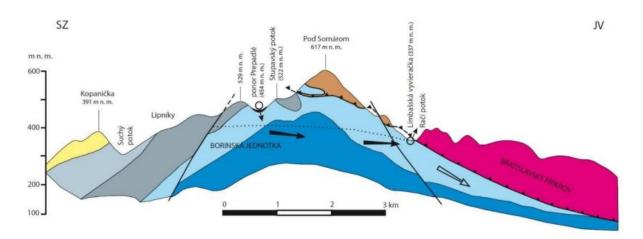
			ponor and the spring waters was documented by a fluorescein tracing test. The spring is located inside	
			Protected Landscape Area of Malé Karpaty Mts.	
3. Občasný prameň	N 48,88893° E 20,3493° Z = 941 m asl Slovenský raj Mts., Havrania Skala Mt., Stratena	0/12/ 1230 Not tapped. Ebb and flow (intermittent) spring	H, S, A, Ec The Občasný prameň spring ("Occasional spring" in translation) is one of the two intermittent springs in West Carpathians, issuing from Middle – Late Triassic limestones. It is an pulsing intermittent spring with sudden changes in discharge caused by inner hydraulic within the groundwater circulation system. Given the fluctuation in yield from 0 to 45.6 l/s with longer periods without groundwater outflow. The spring is active mainly in the second quarter of the year (March – June) as a result of increased rainfall. In the summer and autumn its activity is sporadic, and the spring totally disappears during winter months. The spring as a strange natural phenomenon was first described in a publication by Erwin Helm (1860), a later article by Dionýz Štúr from 1867 was an attempt to explain its strange behaviour.	Peter Malik
4. Periodická vyvieračka	N 48,689517° E 19,904743° Z = 460 m asl Muránska planina Plateau / Tisovec Karst, Rimava River basin	The spring has been captured by the waterworks since 1963 and, together with groundwater of another nearby Teplica karst spring, is used to supply drinking water to the town of Tisovec.	H, S, A, Ec, E This ebb and flow spring is the second spring of that kind in West Carpathians (together with Obšasny pramen). It drains (Late Triassic limestones of the Muráň nappe. The intermittent pulsation of Periodická vyvieračka (Periodic Spring) near Tisovec and abrupt changes in its yield are hydraulically caused by pressure changes during flow processes in both water-filled and air-filled cave spaces. The Periodická vyvieračka spring has three outlets: one permanent and two periodic. Groundwater flows continuously from the permanent outlet with a discharge of around 6 l/s the time of spring's total minimum yield. The first (I.) and second (II.) periodic spring outlets are active only at the time of flow outburst. Outlet II. starts its activity with the onset of yield approximately 2 minutes after outlet I. the Periodická vyvieračka spring is located on the edge of the area of European importance SKUEV0282 Tisovský kras and on the edge of the protection zone of the Muránska planina National Park.	Peter Malik
5. Vrchovište	N48,843633° E18,247127° Z = 267 m asl	72 / 237 /1982 The karst spring was captured by building a spring	A, H, E, S, Ec The most abundant the group of karst springs emerging on the Slatina spring line located at the edge of karst aquifer formed in Middle — Late Triassic	Erika Kováčová
	Strážovské vrchy Mts.,	trap/chamber situated directly above a large	limestones. The Vrchovište spring waterworks intake facility is considered to be one of the top architectural and	

	Stream, groundwater outlet, which previously was creating a lake flowing through an open channel into the nearby Bebrava stream.	construction works of its time (the 1960s), with an emphasis on the complexity of the design and implementation of architecture in the sense of fine art. It was captured in 1968 and has been used since 1976. It is supplying the districts of Bánovce nad Bebravou, Partizánske and Nitra with drinking water. Important archaeological site in nearby located Dúpna diera cave.	
--	--	---	--


MIKAS - Jergaly spring

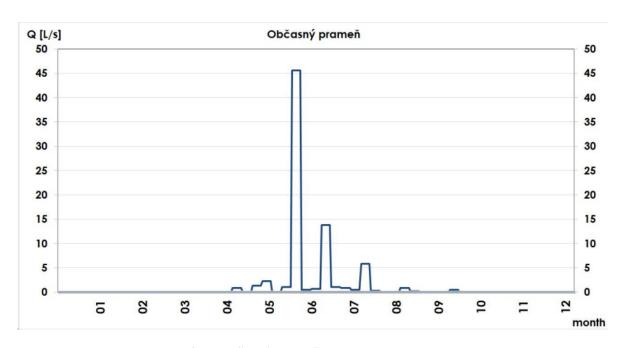
The building of the Jergaly spring waterworks intake facility (Photo: Iveta Zvarová)

The interior of the Jergaly spring waterworks intake facility (Photo: Anton Auxt)


The principle of combined exploitation of static and dynamic groundwater sources of the Jergaly spring and their separation using the recession curve during pumping test in 1971. Source: Eugen Kullman (1990). Legend: 1. Spring yield, 2. Pumped an-mount corresponding to natural discharge, 3. Pumped amount corresponding with static water reserves, 4. Groundwater depletion curve

Ecological outflow of karst waters of the Jergaly spring not used for water purposes. Photo: Anton Auxt

MIKAS – Limbašská vyvieračka

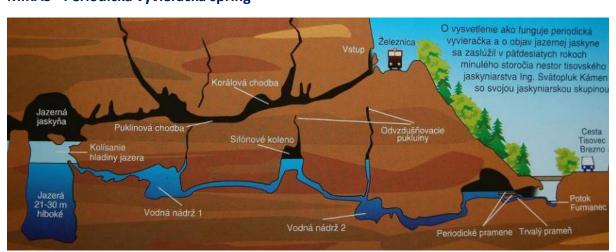


Schematic cross section between Prepadle ponor (swallow hole) and Limbašská vyvieračka. The carbonate rocks units are in grey and blue colors (Courtesy of State Geol. Inst. "Dyoniza Štura" of Slovak Republic – Manuscript material)

Prepadlé swallow hole in the upper part of the Stupavský potok (left) and Limbašská vyvieračka in high water period (Photos: www.mapy.cz (left), and Eva Malíková (right))

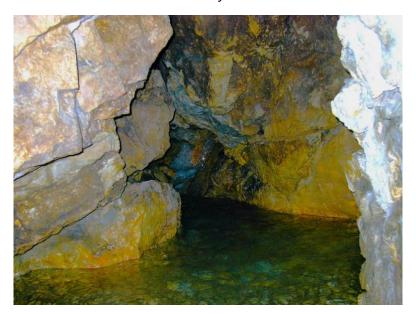

MIKAS - Občasný prameň

Summarized average yields of the Občasný prameň spring under the Havrania skala Mt. during individual weeks during the hydrological year 1995, normal scale, based on SHMI data. Author: Peter Malík


Občasný prameň spring under the Havrania skala Mt. with an old Slovak Hidromet. Service (SHMÚ) gauging object - detail. Photo: Marcel Wolf / www.mapy.cz

Občasný prameň spring under the Havrania skala Mt. after the reconstruction of gauging object in June 2023. Photo: Ján Gavurník

Občasný prameň spring under the Havrania skala Mt. during active outflow outburst. Photo: Ján Griglák / www.mapy.cz


MIKAS - Periodická vyvieračka spring

Traditional hydrodynamic scheme diagram of the Periodická vyvieračka spring near Tisovec compiled according to the concept of S. Kámen.

The building of the waterworks intake facility of the Periodická vyvieračka spring near Tisovec.

Photo:Jozef Fabo.

Outlet with the basic discharge of the Periodická vyvieračka spring near Tisovec. Photo: Peter Malík.

The level of one of the lakes of the Jazerná jaskyňa Cave connected to the Periodická vyvieračka spring near Tisovec. Photo: Dušan Hutka.

MIKAS – Vrchovište

The surroundings of the karst spring Vrchovište in Slatinka nad Bebravou before building up its waterworks intake facility, circa 1960. Photo: archive of Západoslovenská vodárenská spoločnosť, a.s. waterworks.

General view of the Vrchovište spring waterworks intake facility in Slatinka nad Bebravou. Photo: archive of Západoslovenská vodárenská spoločnosť, a.s. waterworks.

Interior of the hall of the Vrchovište spring waterworks intake facility in Slatinka nad Bebravou.

Photo: Peter Malík.

Thomson's culvert gauge in the Vrchovište spring waterworks intake facility (SHMÚ object no. 1095).

Photo: Peter Malík.